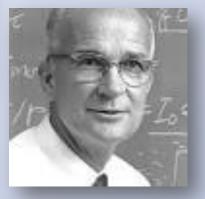
ЭЛЕКТРОНИКА

Лектор:

к.ф.-м.н. Алимгазинова Назгуль Шакаримовна

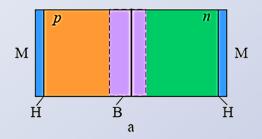

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковый диод — полупроводниковый нелинейный элемент с двумя выводами, имеющий один p—n-nepexoд.

Heinrich Rudolf Hertz (1857-1894)

1906 год: Открытие явления диодной проводимости у полупроводников было сделано **Генрихом Герцем.**

William Bradford Shockley (1910 – 1989)


1909 год: Уильям Шокли впервые опубликовал работу о теории диода.

1930-е годы:

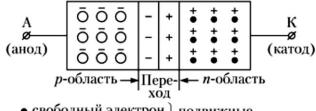
Развитие технологий и производство диодов с помощью кремния и германия.

Современность: Развитие полупроводниковой технологии позволило создавать различные типы диодов для разнообразных применений.

а) *p*–*n*-переход и **2** омических перехода, через которые соединяются выводы диода

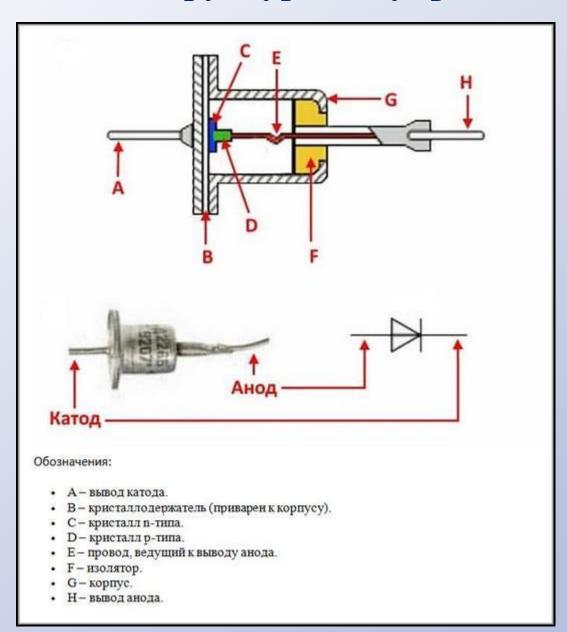
с выпрямляющим p-n-переходом

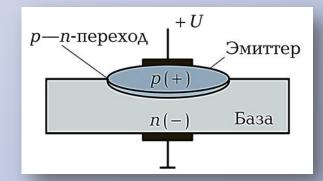
Тип перехода М - металл


Н - невыпрямляющий электрический (омический) переход

В - выпрямляющий электрический переход

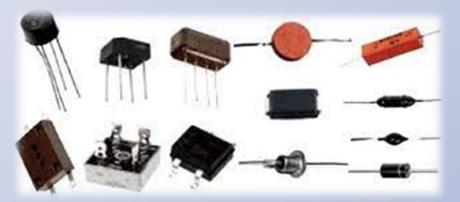
б) *p-n*-переход «металл – полупроводник» и 1 омический переход

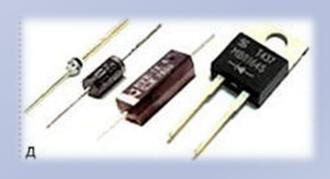

с выпрямляющим p—nпереходом на контакте «металл-полупроводник»



- свободный электрон | подвижные Освободная дырка | носители заряда
- + неподвижный ион донорной примеси
- неподвижный ион акцепторной примеси

1. Структура полупроводникового диода





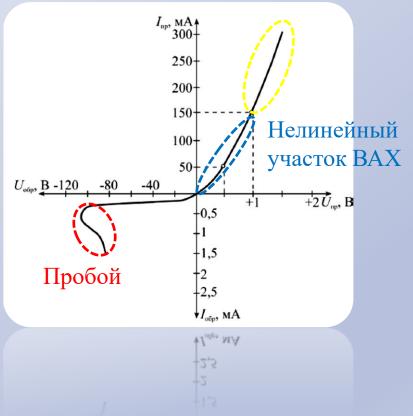
2. Применение

- 1. Выпрямление переменного (или импульсного) тока и получение в результате постоянного.
- 2. Детектирование амплитудно-модулированных или импульсных сигналов.
- 3. Смешивание или перемножение сигналов, в частности детектирование частотно- и фазомодулированных сигналов.
- 4. Фиксация определённого уровня сигнала.
- 5. Логическая операция "И" в цифровой электронике.
- 6. Переключающие диоды для переключения высокочастотных сигналов.

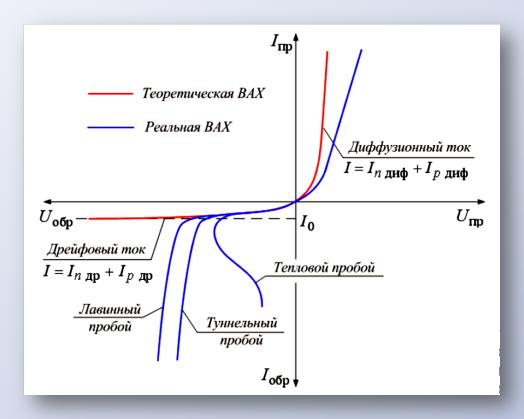
Преимущества полупроводниковых диодов

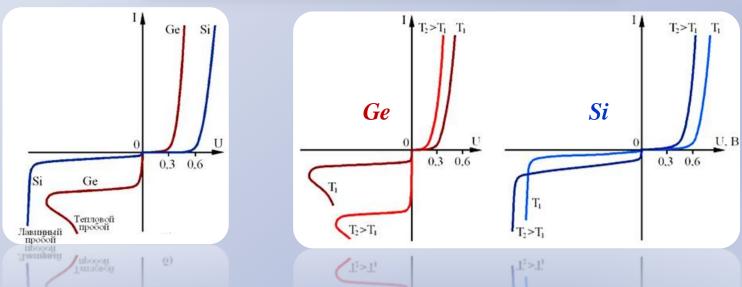
- не требуют специального источника энергии для образования носителей заряда;
- > очень компактны, миниатюрны.
- отсутствуют потери энергии на накал катода
- высокий КПД
- > дешевизна

Недостатки:

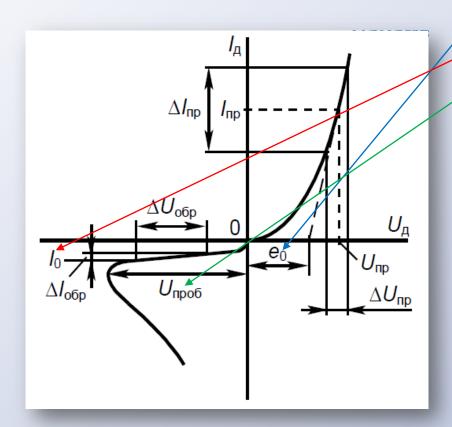

- ightharpoonup Работают в ограниченном интервале температур (не ниже 70^{0} C и не выше 125^{0} C)
- ▶ Выходят из строя в условиях повышенной радиации (появляется огромное количество новых электронов и дырок)

3. Вольт-амперная характеристика (ВАХ)


Идеальный электрический вентиль (диод) не имеет потерь, его сопротивление в проводящем направлении равно нулю, в непроводящем – бесконечности.



Линейный участок ВАХ



Параметры реальной ВАХ диода

 I_0 — напряжение отсечки («пятка ВАХ»); I_0 — тепловой ток, протекающий через запертый p-n-переход;

 $U_{\rm проб}$ — напряжение пробоя — обратное напряжение, при котором происходит электрический пробой p-n-перехода;

$$R_{\rm np} = \frac{U_{\rm np}}{I_{\rm np}}$$

- прямое статическое сопротивление p-n-перехода (сопротивление постоянному току);

$$r_{\rm np} = \frac{\Delta U_{\rm np}}{\Delta I_{\rm np}}$$

- дифференциальное (динамическое) сопротивление p-n-перехода (сопротивление переменному току);

$$R_{\text{obp}} = \frac{U_{\text{obp}}}{I_{\text{obp}}}$$

- обратное статическое сопротивление p-n-перехода;

$$r_{\text{ofp}} = \frac{\Delta U_{\text{ofp}}}{\Delta I_{\text{ofp}}}$$

- обратное дифференциальное (динамическое) сопротивление p-n-перехода.

Типовые значения параметров диода

$$U_{\text{пр тип}} = 0.7B - Si;$$

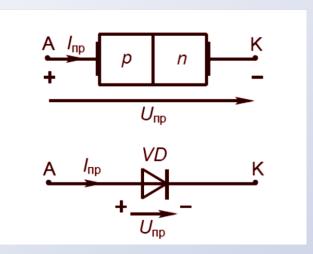
 $U_{\text{пр тип}} = 0.35B - Ge.$

$$r_{\mathsf{np}}$$
 = десятки ÷ сотни Ом – Si;

$$r_{\rm np}$$
 = десятки ÷ 50 Ом – Ge.

$$I_0$$
 = десятки ÷ сотни мкА;

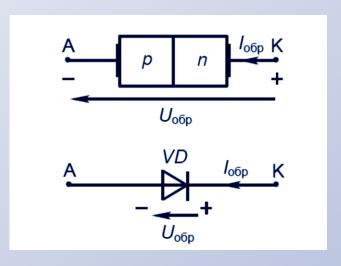
$$I_{0 \text{ Ge}} \approx 10 \cdot I_{0 \text{ Si}}$$
.


$$r_{\text{обр}}$$
 = сотни МОм – Si;

$$r_{\text{обр}}$$
 = единицы МОм – Ge.

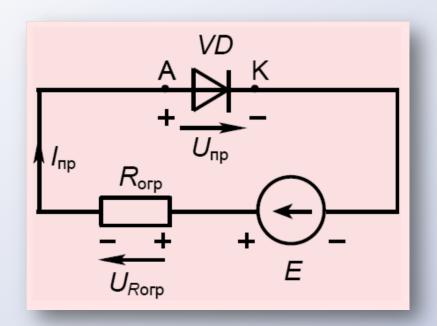
 $e_0 = 0.4 \div 0.6B - Si;$

4. Включение диода в электрическую цепь


ВКЛЮЧЕНИЕ ДИОДА В ПРЯМОМ НАПРАВЛЕНИИ

Полярность внешнего напряжения **СОВПАДАЕТ** со знаком основных носителей заряда в полупроводниках: ** подключен к p -области; ** подключен к n -области.

Диод ОТКРЫТ (ВКЛЮЧЕН)


ВКЛЮЧЕНИЕ ДИОДА В ОБРАТНОМ НАПРАВЛЕНИИ

Полярность внешнего напряжения **HE COBПАДАЕТ** со знаком основных носителей заряда в полупроводниках: ** подключен к n -области; ** подключен к p -области.

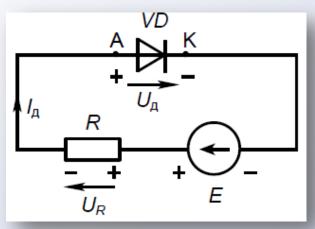
Диод ЗАПЕРТ (ВЫКЛЮЧЕН)

ВКЛЮЧЕНИЕ ДИОДА В ПРЯМОМ НАПРАВЛЕНИИ

Внешнее прямое напряжение всегда прикладывается к диоду через ограничительный резистор R_{op} .

Резистор $R_{\text{огр}}$ служит для защиты диода и источника питания E ОТ ПЕРЕГОРАНИЯ!

При прямом смещении p-n-перехода, когда $U_{\rm д} > 0$, сопротивление диода мало́, поскольку переход заполнен основными носителями заряда, поэтому прямой ток $I_{\rm пр}$ через диод задается и ограничивается одновременно внешней цепью.


$$E = I_{np} \cdot R_{orp} + U_{np} \implies I_{np} = \frac{E - U_{np}}{R_{orp}}.$$

 $U_{\rm np}$ – прямое падение напряжения на диоде.

$$e_0 = 0.4 \div 0.6 \text{B} - \text{Si};$$
 $r_{\text{np}} = \text{десятки} \div \text{сотни Om} - \text{Si};$ $e_0 = 0.2 \div 0.3 \text{B} - \text{Ge}.$ $r_{\text{np}} = \text{десятки} \div 50 \text{ Om} - \text{Ge}.$

Oпределение I_{np} и U_{np} с помощью BAX

BAX

Уравнение **нагрузочной прямой**: $E = I_{\text{д}}R + U_{\text{д}}$

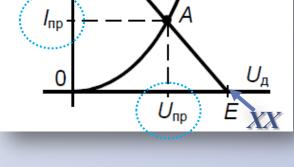
В режиме холостого хода (ХХ) ток в цепи

и в режиме короткого замыкания (КЗ) напряжение

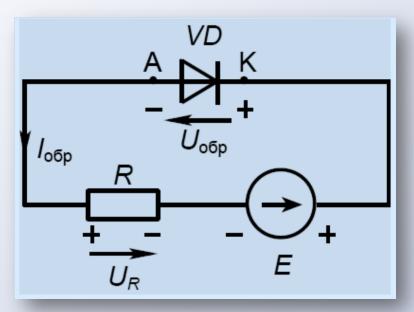
2.
$$U_{\rm J} = 0$$
; тогда $I_{\rm J} = E/R$;

Точка пересечения ВАХ и нагрузочной прямой соответствует точке A c координатами (U_{np} , I_{np}).

На практике U_{np} принимают равным типовому значению:


$$U_{\text{пр тип}} = 0.7B - Si; U_{\text{пр тип}} = 0.35B - Ge;$$

 I_{np} – прямой ток диода, ограничивается предельно допустимым значением $I_{np\ max}$ (справочный параметр). Чтобы диод не выгорел необходимо обеспечить:



- $E>>U_{np}$, то в расчетах пренебрегают значением U_{np} ; $E\approx U_{np}$, то U_{np} учитывают (для повышения точности расчетов).

Чтобы обеспечить смещение *p-n*-перехода в прямом направлении внешнее напряжение должно превышать прямое, т.е. $E > U_{\text{пр}}$, в противном случае p-n-переход (диод) не откроется.

ВКЛЮЧЕНИЕ ДИОДА В ОБРАТНОМ НАПРАВЛЕНИИ

При таком напряжении (U_{π} < 0) высота барьера потенциального повышается И основных носителей количество заряда, барьер преодолевающих экспоненциально уменьшается. В этом случае сопротивление р-nперехода велико и на практике его полагают бесконечно большим.

$$E = I_{\text{off}} \cdot R + U_{\text{off}}.$$

Т.к. сопротивление p-n-перехода $\to \infty$, то обратный ток $I_{\text{обр}} \to 0$, поэтому $U_{\text{обр}} \cong E$.

$$U_{\text{ofp}}\cong E.$$

Видно, что всё внешнее напряжение приложено к диоду.

Внешнее запирающее напряжение должно быть меньше предельно-допустимого обратного напряжения (справочный параметр):

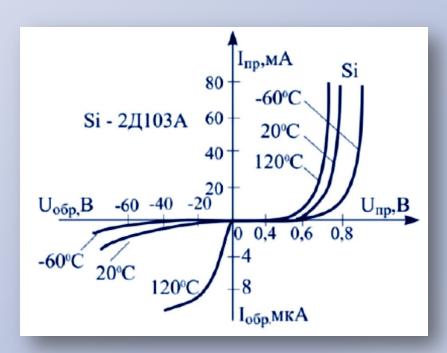
$$U_{
m ofp} < U_{
m ofp\,max}$$
 .

В реальном случае $I_{\text{обр}} \neq 0$, $I_{\text{обр}} = I_0$ (обратный (тепловой) ток: $I_0 = \text{десятки} \div \text{сотни мкA}$ (справочный параметр), причем $I_{0Ge} \approx 10 I_{0 Si}$.

$$r_{\text{обр}}$$
 = сотни МОм — Si; $r_{\text{обр}}$ = единицы МОм — Ge.

Т.к. тепловой ток обусловлен неосновными носителями, концентрация которых зависит от температуры, то тепловой ток также зависит от температуры, причем достаточно сильно.

Значение обратного тока удваивается при изменении температуры перехода на каждые 8°C для Si и 10°C для Ge диода:


$$I_0(t^\circ) = I_0(t_0^\circ) \cdot 2^{\frac{t^\circ - t_0^\circ}{10}}$$
 - Ge;
 $I_0(t^\circ) = I_0(t_0^\circ) \cdot 2^{\frac{t^\circ - t_0^\circ}{8}}$ - Si;

Теоретически тепловой ток I_0 не зависит от приложенного обратного напряжения, хотя практически линейно возрастает с увеличением $U_{oбp}$.

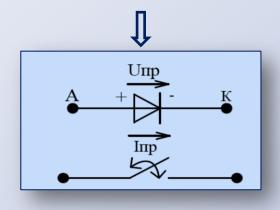
$$\mathsf{TKH} = \frac{\Delta U_{\mathsf{np}}}{\Delta T} \bigg|_{I_{\mathsf{np}} = \mathsf{const}}$$

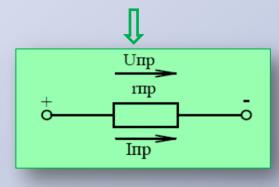
температурный коэффициент напряжения — показывает изменение прямого напряжения при заданном изменении температуры при протекании постоянного тока через p-n-переход.

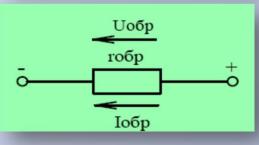
 t° - рабочая температура перехода; t_0° - фиксированная температура (300K).

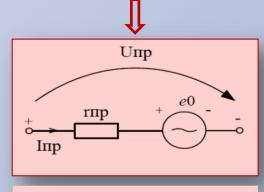
TKH =
$$(-) 2 \div 3 \text{ MB}/^{\circ}C$$

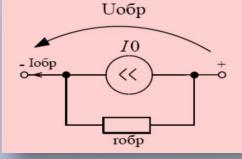
TKH_{TMII} = $(-) 2.5 \text{ MB}/^{\circ}C$

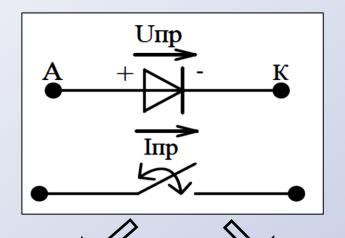

5. Схемы замещения полупроводниковых диодов

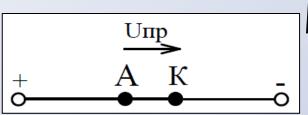

Для построения схемы замещения диода его сложную вольтамперную характеристику аппроксимируют (приближают) прямыми линиями.

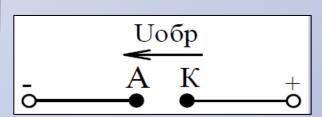

ВИДЫ АППРОКСИМАЦИИ ВАХ ДИОДА


1. Идеальный вентиль 2. Диод-


3. «Точная» схема замещения

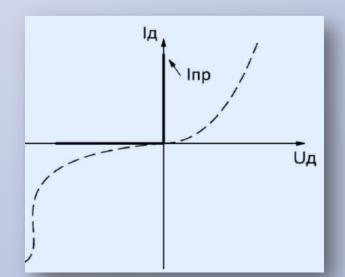






1. Идеальный вентиль

В большинстве практических расчетов прямым сопротивлением и прямым напряжением *p-n*-перехода можно пренебречь, т.е. прямосмещенный *p-n*-переход представляется эквипотенциальной точкой.

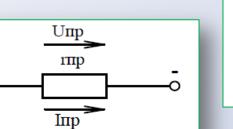


1.1 Диод включен (прямосмещенный диод представляется закороткой)

1.2 Диод выключен (обратносмещенный диод представляется разрывом)

$$U_{_{\mathrm{II}}} = U_{_{\mathrm{IIP}}} \cong 0,$$

$$R_{_{\mathrm{II}}} = r_{_{\mathrm{IIP}}} \cong 0.$$



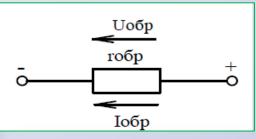
$$U_{\mathrm{d}} = U_{\mathrm{off}},$$

$$R_{\mathrm{d}} = r_{\mathrm{off}} \cong \infty,$$

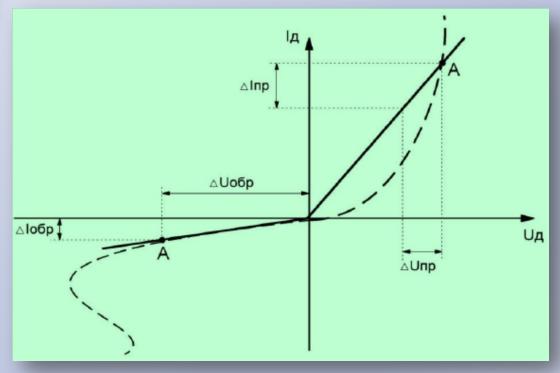
$$I_{\mathrm{off}} = 0.$$

2. Диодсопротивление

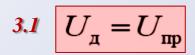
Диод-сопротивление - схема замещения с резистором.

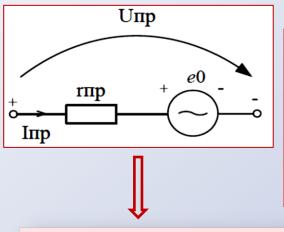

$$2.1 \quad U_{\rm m} = U_{\rm mp}$$

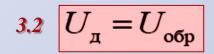
$$egin{aligned} I_{\mathrm{np}} &= rac{U_{\mathrm{np}}}{r_{\mathrm{np}}}; \ R_{\mathrm{p}} &= r_{\mathrm{np}}; \ r_{\mathrm{np}} &= rac{\Delta U_{\mathrm{np}}}{\Delta I_{\mathrm{np}}}; \end{aligned}$$

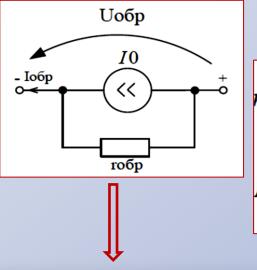

Погрешность аппроксимации меньше, чем в случае Идеального вентиля!!!

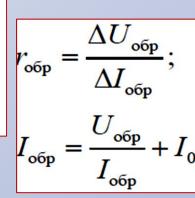
$$2.2 \ \overline{U_{\rm m} = U_{\rm obp}}$$

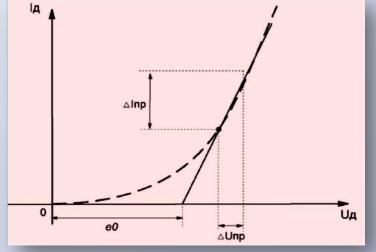

$$I_{\text{oбp}} = \frac{U_{\text{oбp}}}{r_{\text{oбp}}};$$
 $R_{\text{m}} = r_{\text{oбp}}.$

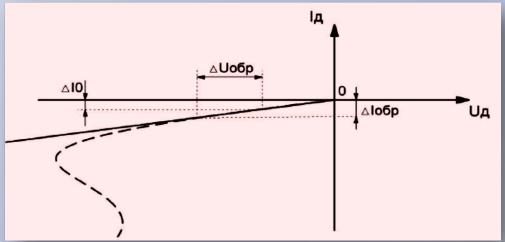

$$r_{\rm obp} {=} \frac{\Delta U_{\rm obp}}{\Delta I_{\rm obp}}. \label{eq:robp}$$


3. «Точная» схема замещения

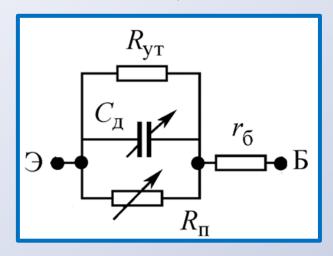

Применяется если требуется высокая точность в расчетах.






$$egin{aligned} r_{
m np} = & rac{\Delta U_{
m np}}{\Delta I_{
m np}}; \ I_{
m np} = & rac{U_{
m np} - e_0}{r_{
m np}}. \end{aligned}$$

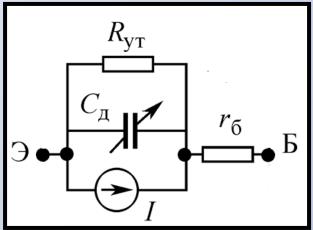
3. «Точная» схема замещения



Эквивалентная схема замещения *p-n* перехода

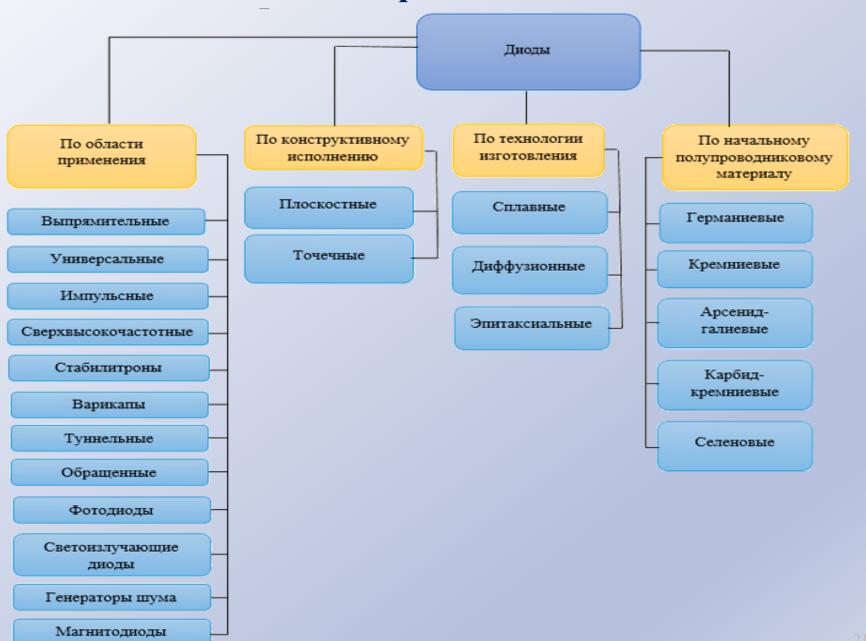
 C_{π} — общая емкость диода, зависящая от режима;

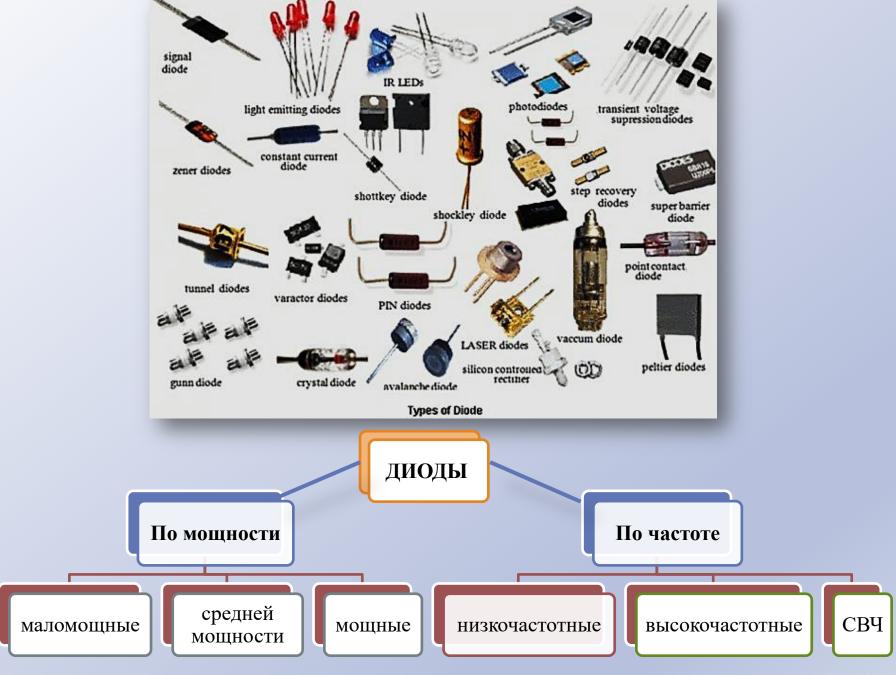
 r_{δ} — объемное сопротивление области базы диода;


 $R_{
m vr}$ – сопротивление утечки (когда диод включен в обратном направлении).

при малых сигналах: не учитываются нелинейные свойства диода.

 $R_n = R_{\partial u \phi}$ — дифференциальное сопротивление перехода в заданной рабочей точки


$$R_{\text{диф}} = (\Delta U/\Delta I)_{U=\text{const}}$$



при больших сигналах учитывают нелинейные свойства р-п перехода путем замены дифференциального сопротивления на зависимый источник тока

$$I = I_0(e^{U/Vt} - 1)$$
.

6. Классификация диодов

УГО диодов

Общее обозначение (диоды выпрямительные, импульсные и т.п.)		Варикап
Стабилитрон односторонний		Варикапная сборка (два варикапа с общим выводом катода)
Стабилитрон двусторонний (двуханодный стабилитрон)		Двунаправленный диод
Ограничитель напряжения односторонний		Светодиод
Ограничитель напряжения двусторонний		овотоднод
Диод туннельный		Фотодиод - Нестандартные обозначения ————————————————————————————————————
Диод обращенный	Ди	од Шоттки Двусторонний ограничитель напряжения

7. Маркировка диодов

На первом месте – буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

- ▶ Г(1) германий;
- ► К(2)—кремний;
- A(3)—арсенид галлия;
- ➤ И (4) —индий.

На втором - – класс или группа диода. Они тоже могут иметь разное значение:

Д — выпрямительные;

В — варикап;

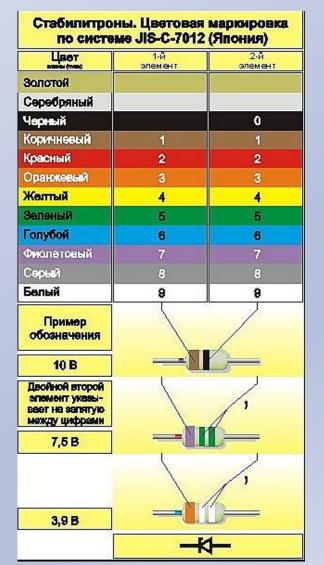
А — сверхвысокочастотные;

И — туннельные;

С — стабилитроны;

Ц —выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая применение и электрические свойства модели.


Четвёртое место —числа от 01 до 99 (или буква (от A до Я)), означающее порядковый номер разработки.

Виды маркировок

- Американская JEDEK Joint Electron Device Engineering Council
- Европейская PRO ELECTRON
- Японская JIS Japanese Industrial Standard JIS-C-7012

Цвет	1–Ĥ 3.ЛеМе НТ	2-13 злемент	Й-8 тнемеце	4-й злемент	5-й алемент
Золотой	Î				
Серебряный					
Черный	0	0	0	0	¥ <u>4</u>
Коричневый	1	1	1	1	A
Красный	2	2	2	2	1
Оранжевый	3	3	3	3	C
Желтый	4	4	4	4	D
Зеленый	5	5	5	5	E
Голубой	6	6	6	6	F
Фиолетовый	7	7	7	7	G
Серый	8	8	8	8	H
Белый	9	9	9	9	1
Пример обозначения					
1N66					
1N237A 1N1420G					
				The second secon	

8. Конструкция полупроводниковых диодов

Основой диодов является кристалл полупроводника п-типа проводимости, который называется базой

В зависимости от соотношения толщины базы, площади базы и площади р-п перехода

На базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °C) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область р-типа проводимости и р-п переход большой плоскости.

Вывод от р-области называется **анодом**, а вывод от n-области — **катодом**.

К базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя р-область. Получается р-п переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).

3) Микросплавные диоды

Получают **путём сплавления микрокристаллов полупроводников р- и п- типа проводимости**. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам — точечные.

Устройства в которых применяются

Точечные диоды

ДИОДЫ

Гочечные

Высокочастотные каскады приемных устройств

Слаботочные импульсные устройства с очень короткими импульсами или с высокой частотой следования импульсов

Используются в качестве:

Детектор высокочастотных сигналов

Смеситель радиосигнала с сигналом гетеродина для выделения промежуточной частоты

УГО диодов

_	Выпрямительные		
Диоды точечные	СВЧ-диоды		
	Выпрямительные	\rightarrow	
	Стабилитроны	 	
	Туннельные		
	Варикапы	→	
Диоды плоскостные	Обращенные		
	Светодиоды		
	Фотодиоды		